Seminarium

Polskiego Towarzystwa

Elektrotechniki Teoretycznej i Stosowanej

"Elektryczna aktywność mózgu"

Ryszard Tadeusiewicz

Nie będziemy się też zajmowali informacjami, jakie na temat mózgu zebrali badacze zajmujący się nim z punktu widzenia różnych dyscyplin szczegółowych

Podczas pracy mózgu powstają fale o częstotliwości w zakresie 1 - 100 Hz oraz amplitudzie 5 - kilkaset $\mu V:$

Fale a - występują zazwyczaj w okolicy ciemieniowo-potylicznej; częstotliwość 8 - 13 Hz; amplituda 30 - 100 µV. Ich stłumienie następuje podczas percepcji wzrokowej. Przy braku bodźców wzrokowych te fale przeważają.

Fale β - zazwyczaj występują w okolicy czołowej; częstotliwość 14 - 60 Hz; amplituda - poniżej 30 $\mu V.$ Związane z aktywnością kory.

Fale 8 - częstotliwość 4 - 7 Hz. Związane z fazą snu REM

ale 5. częstotliwość mniejsza niż 4 Hz, Zwiazane z faza snu NREM. Przypadku jakiejkowieć patologii (mp. zniszczone komórki lub upośledzone przewodzenie chemiczne) będzie opóźniać lub przyspieszać szybkość ich komórki lub konfigurację. W przypadku niektórych chorób (np. padaczki) zapis EEG może mieć decydujące znaczenie w diagnozie. Użycie komputerów do analizy EEG jest wręcz koniecznością.

Wielokanałowy zapis EEG kilku godzin snu rozwinięty papierze byłby wstęgą o długości prawie pół kilometra.

Oczywistym jest, że sygnał EEG zarejestrowany z kilkudziesięciu lub kilkuset kanałów nie jest poddawany analogowej ocenie wzrokowej, lecz podlega dalszej analizie cyfrowej i przetworzeniu pod kątem stworzenia map napięciowych lub częstotliwościowych.

No dobrze, ale skąd się te zjawiska elektryczne w mózgu biorą?

Strukturę rzeczywistej tkanki nerwowej poznajemy za pomocą preparatów mikroskopowych, w których uwidocznione zostają wyłącznie te komórki nerwowe oraz te połączenia między neuronami, które zostaną przypadkowo "trafione" płaszczyzną przekroju

Przykładowe stanowisko badawcze do badania funkcji komórek nerwowych

Potencjały komórkowe

- Potencjał spoczynkowy różnica potencjału elektr. między wnętrzem neuronu (K⁺) a płynem międzykomórkowym na zewnątrz (Na⁺)
 - wnętrz neuronu ma ładunek ujemny w stosunku do płynu
 różnica wynosi przeciętnie 70mV
- Potencjał czynnościowy powstaje pod wpływem bodźca działającego na błonę komórkową
 - ma charakter dynamicznej iglicy
 - ma stałą amplitudę i kształt
 - im silniejszy bodziec tym większa częstotliwość

Kluczem do zrozumienia sposobu generacji, przekazywania i przetwarzania sygnałów neuronowych jest elektryczna polaryzacja blony komórkowej

Matematyczny model powstawania i transmisji impulsu nerwowego

Model zaproponowali Hodgkin i Huxley. Opisuje on zmianę napięcia błony komórkowej:

$$C\frac{dV}{dt} = I - (I_K + I_{Na} + I_L)$$

Gdzie:

dt

I – całkowity prąd związany z przepływem jonów I_k- prąd związany z przepływem jonów potasu I_{Na}- prąd związany z przepływem jonów sodu I_k- prąd resztkowy związany z przepływem innych jonów

Prądy te mogą być zapisane przy pomocy następujących równań:

$$I_{K} = g_{K}n^{4} \langle \!\! \langle \!\! V - V_{K} \rangle \!\!\! \rangle$$
$$I_{Na} = g_{Na}m^{3}h \langle \!\! \langle \!\! V - V_{Na} \rangle \!\!\! \rangle$$

Gdzie: g – transkonduktancja V – potencjał spoczynkowy h,m,n – wielkości doświadczalne

 S_L

Matematyczny model transmisji impulsu nerwowego

Z kolei h, m, n mogą być znalezione z równań:

$$\frac{dn}{dt} = \alpha_h \sqrt{3} - h - \beta_h \sqrt{3}$$
$$\frac{dm}{dt} = \alpha_m \sqrt{3} - m - \beta_m \sqrt{3} n$$
$$\frac{dn}{dt} = \alpha_m \sqrt{3} - m - \beta_m \sqrt{3} n$$

Równania te trudno rozwiązać -> uproszczenia m.in. Nagumo

Konkretny zapis odpowiednich empirycznych formul:

$$\begin{split} &\alpha_n(V) = 0,01(V+55)/(1-\exp(-(V+55)/10)) \\ &\alpha_m(V) = 0,1(V+40)/(1-\exp(-(V+40)/10)) , \\ &\alpha_h(V) = 0,07\exp[-(V+65)/20], \\ &\beta_n(V) = 0,125\exp(-(V+65)/80), \\ &\beta_m(V) = 4\exp(-(V+65)/18), \\ &\beta_h(V) = 1/(1+\exp(-(V+35)/10)). \end{split}$$

Parametry modelu

- morfologia
- parametry równania kablowego
- kinetyka kanałów zależnych od napięcia oraz od liganda
- gęstość tych kanałów
- parametry kontrolujące dynamikę stężenia wapnia

Odtwarzanie kształtu komórki nerwowej do celów symulacji

Do zbudowania modelu użyto:

- 1600 kompartmentów
- •8021 modeli kanałów jonowych
- 10 typów różnych złożonych opisów matematycznych kanałów zależnych od napięcia
 - 2000 równań różniczkowycł
- •19200 parametrów do oszacowania przy dostrajaniu modelu
- •Opisu morfologii zrekonstruowanej za pomocą mikroskopu

Żeby model zaczął działać trzeba

- Przyjąć odpowiednią metodykę modelowania
- Ustalić strukturę modelu
- Wybrać parametry charakteryzujące obiekt
- Oszacować ich wartości
- Ustalić na drodze symulacji parametry wolne

Nazwa (angielska)	Skrót	Er	Wapół- czynnik	р	А	в	С	D	E	F	G	н
Fast sodium current	NaF	45	m	3	35.0	0	5	-10.0	7.0	0	65	20.0
			h	1	0.225	1	80	10.0	7.5	0	-3	-18.0
Persistent sodium current	NaP	45	m	3	200.0	1	-18	-16.0	25.0	1	58	8.0
P calcium current	CaP	135	m	1	8.5	1	-8	-12.5	35.0	1	74	14.5
			h	1	0.0015	1	29	8.0	0.0055	1	23	-8.0
T calcium current	CaT	135	m	1	2.60	1	21	-8.0	0.180	1	40	4.0
			h	1	0.0025	1	40	8.0	0.190	1	50	-10.0
Anomalous rectifier	Kh	-30	Patrz S	pai	n i in., 19	87						
Delayed rectifier	Kdr	-85	Patrz Y	í an	ada I in.,	198	9, wspi	słezym	niki pomi	10201	ne prze	z 5
Persistent potassium curr	КМ	-85	Patrz N	atrz Yamada I in., 1989, współczynniki pomnożone przez 5								
A current	KA	-85	m	4	1.40	1	27	-12.0	0.490	1	30	4.0
			h	1	0.0175	1	50	8.0	1.30	1	13	-10.0
BK calcium-activated potassium current	KC	-85	m	1	7.5		alph co	ia-m is instant	0.110	0	-35	14.9
			z	2	4.00	10						
K2 calcium-activated potassium current	K2	-85	m	1	25.0		alph co	a-m is instant	0.075	0	5	10.0
			Z	2	0.20	10						

Wurmoorgomo	om nim to an	io moromotr	r lromolónu	ionorra	und ad
wvznaczone	embilvezi	ne baramen	v Kanalow	lonow	ven - eu

	Pr w poszczej	zewodność ka gólnych części modelu PM	nałów ach komórki w 9	Przewodność kanałów w poszczególnych częściach komórki w modelu PM10			
Typ kanalu	soma	główny dendryt	pozostałe dendryty	soma	główny dendryt	pozostałe dendryty	
NaF	7500	0.0	0.0	7500	0.0	0.0	
NaP	1.0	0.0	0.0	1.0	0.0	0.0	
CaP	0.0	4.5	4.5	0.0	4.0	4.5	
CaT	0.5	0.5	0.5	0.5	0.5	0.5	
Kh	0.3	0.0	0.0	0.3	0.0	0.0	
Kdr	600.0	60.0	0.0	900.0	90.0	0.0	
КМ	0.040	0.010	0.013	0.140	0.040	0.013	
KA	15.0	2.0	0.0	15.0	2.0	0.0	
кс	0.0	80.0	80.0	0.0	80.0	80.0	
K2	0.0	0.39	0.39	0.0	0.39	0.39	

Potem można już prowadzić eksperymenty, porównując działanie modelu ze znanymi faktami charakteryzującymi zachowanie obiektu

odwrócenie polaryzacja ("depolaryzacja") – Na* repolaryzacja – K*, Cl⁻ hiperpolaryzacja – K*

Kanały dla sodu są otwarte około 1-2 ms

Kanały jonowe:

- 1. Bramkowane napięciem dla sodu, potasu, wapnia itd:
- 2. Bramkowane ligandem np. acetetylocholiną

Receptory dla acetylocholiny (cholinergiczn

1. Nikotynowy (kanał sodowy bramkowany acetylocholiną)

 Muskarynowy (metabotropowy, bramkowany muskaryną)

Mechanizm powstawania pobudzenia w następstwie zadziałania neuromediatora

A teraz modelowanie ...

Cechy przekaźnictwa neuronowego:

1.Zasada "wszystko albo nic"

- Pojedyncze włókno zawsze odpowiada taką samą falą depolaryzacyjną.
- 3. Siła działającego bodźca nie jest ważna.
- 4. Przewodnictwo odbywa się bez dekrementu.
- 5.Kodowanie informacji we włóknie może mieć charakter jedynie częstotliwościowy.

Analiza równań Hodgkina i Huxleya (oraz wyników eksperymentów biologicznych) daje ciekawy obraz tego, co się dzieje **po** wygenerowaniu impulsu

Właściwości włókien nerwowych mielinowych i bezmielinowych

Grup a włókien			4		n	0	;
Podgrupa	α	β	γ	δ	Б	5	dr
Obecność osłonki mielinowej	+	+	+	+	+		-
Średnica aksonu [µm]	12 - 20	5 – 12	3 - 6	2 - 5	±3	0,3 - 1.3	0,4 - 1,2
Prędkość przewodzenia [<i>m/s</i>]	70 - 120	30 - 70	15 - 30	12 - 30	3 - 15	0,7 - 2,3	0,5 - 2,0

- włókna rdzenne
 - impulsy przesuwają się skokowo pomiędzy cieśniami węzłów
 - prędkość przewodzenia: do 120 m/s

Diaccego impuls się nie cofa?

Progragacja impulsów elektrycznych ws uloknach nerwowych jest dosyć powolnal

p włókna	Funkcja (przykłady)	Srednica (µm)	Szybkość przewodzenia (m/s)
Aα	włókna alerentne wrzecionek mięśniowych i receptorów ścięgnowych; elerentne mięśni szkieletowych	15	70-120
AB	włókna alerentne skóry (dotyk)	8	30-70
AY	włókna elerentne wrzecionek mięśniowych	5	15- 30
Aδ	alerentne włókna skórne (temperatura i "szybki" ból)	3	12- 30
В	przedzwojowe włókna współczulne	3	3- 15
С	ból skórny ("powolny" ból); włókna współczulne pozazwojowe	1 (bezrdzenne)	0.5- 2
odział w	löklen nerwowych (wg Erlangera i Gras	sera)	

